PeanutBase.org

The Genomic Data Portal for Arachis

Ethalinda K.S. Cannon1, Sudhansu Dash2, Scott R. Kalberer3, Wei Huang5, Nathan T. Weeks3, Deepak Bitragunta3, Andrew D. Farmer7, Julie A. Dickerson1,6, Steven B. Cannon3,5

1 Genetics, Development and Cell Biology, ISU; 2 Virtual Reality Application Center, ISU; 3 USDA-Agricultural Research Service; 4 Agronomy, ISU; 5 Electrical and Computer Engineering, ISU; 6 National Center for Genomic Research

PeanutBase provides peanut researchers and breeders with trait, genetic and genomic data for *Arachis* and provides means for connecting peanut data to closely related plants with more developed datasets, for example, soybean and common bean.

PeanutBase is being developed in collaboration with the Legume Information System (LIS: http://legumeinfo.org)

Marker Assisted Selection (MAS)

MAS pages are being created with help from experts in the community on particular traits of interest. Each page combines information and data pertaining to a particular trait.

Traits and QTL maps – TSWV example

Both genome assemblies can be explored by genome browser and are available as FASTA downloads.

Gene models have been created for both *A. duranensis* and *A. ipaensis* using two methods, MAKER-P and GLEAN and are available as genome browser tracks.

Arachis gene models can be compared to *Glycine max* (soybean) and *Phaseolus vulgaris* (common bean) gene models to find likely gene function.

Sequence Search

BLAST and BLAT are available for searching and aligning sequence against the reference assemblies and gene models. Both show the alignments on the reference sequence browsers.

A reference genome assembly for *Arachis hypogaea*

Because of the complexity of the tetraploid *A. hypogaea*, its likely diploid progenitor species, *A. duranensis* and *A. ipaensis* were sequenced and assembled first. Although the two species diverged ~ 3 mya, they still maintain significant synteny, although some large rearrangements have occurred... but there have been some significant rearrangements as well.

The two progenitor diploid genomes are remarkably similar...
