Biocuration: Best Practices Monica Munoz-Torres

Elsik Computational Genomics Lab | Georgetown University NESCent - NGS | August 18, 2011

What 'annotating' means The naked genome Curation, defined What to look for How it's done Annotation Tools Keep in mind

66 Annotation is a methodology to add information to a document, anchored to a specific point in the document. Data about Data = Metadata

Tags specify ranges of text in a document: linguistics, semantics, business intelligence Mannotating is to connect a subject to broader concepts stored in knowledge bases or ontologies Data about Data = Metadata

Extrinsically: mRNA, proteins from Ab initio: signals & properties of

the sequence

66 Promoters

66 ORFs

66 CpG Islands

Splice sites ... 15' GT / AG 3'[... 66 PolyA tails

Probabilistic methods: e.g. HMM Gene prediction identifies

elements of the genome

Annotation

```
Adding experimental evidence identifies
 domains & motifs:
DNA: ESTs, cDNA, RNAseq demonstrate
 transcription, boundaries, alt. transcripts
Proteins: provide alignments by structural
similarity
```

Automated Structural
Annotation (Ctd')

Curation, To find the best examples and/or eliminate (most) Sometimes there is no way to determine right or wrong: keep them all

What is BioCuration?

The experimental research community generates data

New Research Hypothesis

Biocurators, software and database developers organize the data and make it available for users

66 Is used to evaluate all available evidence and corroborate/modify automated predictions Is done gathering supporting evidence, using quality-control metrics Is necessary because incorrect and incomplete genome annotations will poison every experiment that uses them

Manual Curation

Uses literature and public databases to infer gene function from experimental data Performs sequence-similarity searches Within a phylogenetic framework (e.g: alignment trees): "To predict protein functional assignments Distinguish orthologs from paralogs to classify genes as members of a family

Manual Curation

Orthologs and Paralogs

All methods begin with automated annotation, and then... 1. Small groups of highly trained experts 2. A few good biologists, a few good bioinformaticians camping together 3. Everyone for themselves, then submit 4. Distributed annotation, no updates

Manual Curation:
Different Methods

Dispersed Community Curation Exploits biologists' expertise: functional annotation Initially focuses on families of interest Wet lab work for additional sequence and expression data

- Intron/exon boundaries
- Missing alternative splicing forms

 - Frame-shift errors Missing untranslated regions

 - Degenerate transposons annotated as protein-Merged or split genes Sequence gaps, missing 5' or 3' sequences

 - Single base errors
 - Selenocysteine (Se-Cys, no P) Readthrough transcripts

The good, the bad, the ugly and other inconvenient phenomena

What to look tor

```
The J. Craig Venter Institute:
    Structural and functional
   Designed to yield rich content and high
   Individual protein annotation
Characterized Protein Database: manual
Trusted protein families TIGRFAM, Pfam
```

How it's done: Prokaryotic and metagenomic at JCVI

```
CHAR:
 Literature curation
Standardized nomenclature
GO assignments: function, process,
 evidence codes, functional protein code,
Enzyme Commission #, transport
classification, gene symbol, synonyms
```

CHAR + TIGRFAMs = accurate homology-based functional assignments

```
Wellcome Trust Sanger Institute: Havana,
     manual only
    Transcriptional evidence
   Controlled vocabularies: known, novel,
     Putative, NMD (nonsense-mediated
 Transcripts w/o CDS: retained intron?
7 types of pseudogenes
  How it's done: Eukaryotic
        vertebrates at WTSI
```

WTSI: The Havana Group, manual only All exons are supported (proteins, mRNA, No variants combining exons in patterns that may not occur in vivo If & which CDS to annotate in alternative translation mechanics, conservation &

How it's done: Eukaryotic Vertebrates at WTSI

```
WTSI: The Havana Group
     Illumina transcriptomes (RNAseq) mapped to
     reference genome: alternative splicing at
     single-bp resolution
   Exonerate / PASA alignments of ESTs, full-
   length cDNAs
tBLASTx: new gene models, exon boundaries
 Rfam to other spp; GO; Interpro; Uniprot;
```

How it's done: Pathogens of Eukaryotes at WTSI

66 Generic Model Organism Database project (GMOD): more genome-browsing & editing tools RNA sequencing technology: transcriptome evidence! Yet more robust and more intuitive tools are needed to visualize, edit, analyze and annotate genes, gene products, features and attributes.

An old story's newest toys

GMOD's Apollo

Annotation Hools

```
"
     free, open-source, web-based
     secure remote login, or local
   66
    GUI
  66
   multiple annotations simultaneously
 56
  write-backs
 Multi-Genomic Annotation Tool (MGAT):
evidence, synteny, propagation of information
across protein clusters of different species
```

Manatee

Manatee

```
Otterlace & Zmap:
     BACs BLAST vs. all available DBs; send results to
    MySQL, visualize using Zmap. Bixrem & Dotter
    build alignments, Lace for transcript editing.
 Artemis:
Free; all OSs; adapted to Chado.
 Allows simultaneous view of multiple sequence
alignments in the context of a genome
Artemis Comparison Tool = whole genomes
                WSTI's Tools
```



```
Berkeley- Drosophila & WTSI | GMOD
      Allows easy generation and update of gene models
      and exon boundaries based on overlapping
     (stacked up) evidence sets
    Selecting one gene model highlights all
    overlapping evidence
   Exon-detail editor: click and drag
 'Sequence Aligner' & 'Align selected features':
56
 color-coded alignments; detection of pseudogenes,
structural edits; highlights differences between
expressed and genomic sequences.
```

 A_{pollo}

some re-annotate and curate an already annotated genome some annotate many genomes de novo some also use literature some focus on evidencebased functional annotation Keep in mind Choose an optimal computational gene prediction tool

Improve existing genome annotations & choose a strategy for regular genome updates Keep track of changes in gene

updates and supporting evidence; Stay in the know of changes in our

understanding of biotechnology and gene biochemistry.

Madupu et al, DATABASE. 2010 doi: 10.1093/database/baq001 Prioritize genes for curation:
most likely to be incorrect?
most likely to be incorrect. Specially interesting? by specific type? Document all changes: priorities, algorithms, standards, which datasets for annotation you choose, and Madupu et al, DATABASE. 2010 doi: SOPs 10.1093/database/baq001

The community-based curation model is the most accepted for large genome projects.

conversation!

Questions

"Thank you.