GBrowse: lessons learned and statement of interest

Erick Antezana
Frederic Potier
Who are we?

• Working at Research Centre of Bayer CropScience
• Fungicides, herbicides, insecticides
• ~18’000 world wide,
• ~250 Ghent, Belgium
• Bayer BioScience
 ▪ Biotech company
 ▪ Dealing with: crops, cereals, vegetables, …
• GMOD
 ▪ GBrowse 1.70 and 2.0
 ▪ CMap
 ▪ Galaxy
 ▪ ERGATIS (tigr-workflow)
 ▪ …
Outline

- A bit of history

- Current Bayer GBrowse infrastructure
 - Public Genome Annotations
 - Private Genome Annotations

- In house developed components

- Requirements/Needs

- Conclusion/Discussion
Outline

• A bit of history

• Current Bayer GBrowse infrastructure
 • Public Genome Annotations
 • Private Genome Annotations

• In house developed components

• Requirements/Needs

• Conclusion/Discussion
A bit of history

• GBrowse utilised since 2004
• Tested most of the versions and the available adaptors
 • Currently: **GBrowse 2** and mainly **Bio::DB::GFF**
• Mainly focus on plant genomes (e.g. rice)

Lots of :
• Publicly available plant genome sequences
• Private genomes
• Annotation release updates are more and more frequent

• Requirements:
 • Minor data reformatting
 • Fast data loading
 • Fast querying
 • Highly customizable application
 • High level of integrity in our bioinformatics platform
Outline

• A bit of history

• Current Bayer GBrowse infrastructure
 • Public Genome Annotations
 • Private Genome Annotations

• In house developed components.

• Requirements/Needs

• Conclusion/Discussion
GBrowse infrastructure: Public Data

One MySQL database per Genome Annotation Version

- More than 30 databases
- Around 30 GB of data
Automated Annotation workflow

NGS Data → QC Trimming Assembly → Fasta → Annotation workflow → GFF3 → Conf file generation → gbrowse.conf → Property file

Loading → DB::GFF Adaptor → GBrowse
Outline

• A bit of history

• Current Bayer GBrowse infrastructure
 • Public Genome Annotations
 • Private Genome Annotations

• In house developed components

• Requirements/Needs

• Conclusion/Discussion
In house developments

• Authentication system
 ▪ track of user sessions
 ▪ storage of the user annotation on the server
 ▪ So, activate user access rights

• GFF3 files on-the-fly visualization.

• Blast anchoring/Sequence homology search
 ▪ blast homologies are uploaded as user annotations

• Plugins
 ▪ data export
 ▪ links to in house applications

• In house keyword search engine
 ▪ fast search utility
 ▪ cross databases search

• Gateway
 ▪ centralised access point
BLAST anchoring*

* under development
Gateway to GGB
[Generic Genome Browser]

<table>
<thead>
<tr>
<th>ORGANISM</th>
<th>DESCRIPTION</th>
<th>GENERATED AND ANNOTATED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis thaliana</td>
<td>Complete genome annotation V7</td>
<td>CIRAD</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Arabidopsis thaliana ARII: Arabidopsis thaliana Integrated Database with Brassica sequence homologies</td>
<td>ARII</td>
</tr>
<tr>
<td>Brassica rapa</td>
<td>Pseudomolecule annotation</td>
<td>BROP</td>
</tr>
<tr>
<td>Brassica rapa</td>
<td>DNA annotation</td>
<td>BROP</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Arabidopsis thaliana Small RNA Project</td>
<td>ASRP</td>
</tr>
</tbody>
</table>
Outline

• A bit of history

• Current Bayer GBrowse infrastructure
 • Public Genome Annotations
 • Private Genome Annotations

• In house developed components

• Requirements/Needs

• Conclusion/Discussion
Statement of interest: DB adaptors

- **NGS adaptor**

 Key priority

- **Memory adaptor**

 To be able to specify a file name or a complete path via a parameter so, the adaptor doesn't need to load all the GFF files in the directory

- **Chado adaptor**

 - Portability to Oracle
 - To store user annotation and manual curation
 - Including a system track versions and history of the annotations
 - Management of user access rights

- **SeqFeature::Store**

 Portability to Oracle (c.f. user access rights via VPD)

 Improve loading process: time issues

- **Compatibility with other genome browsers databases**

 For instance: ensembl databases?
Statement of interest: User Interaction

• **Authentication**
 - To track user sessions
 - To enable user access rights management

• **User Annotation Management**
 - To store the user annotations in a database or in a file on the server
 Thus the users will be able to get their annotations while getting connected to different machines
 - To send automatically user’s annotations to GBrowse via a URL parameter

• **Integration with CMap**
Statement of interest: Gbrowse.conf

- Issues with the conf file format:
 - Error prone
 - Difficult to debug
 - Steep learning curve
 - Time consuming to maintain
 - ...

- **Solution**: automatic conf file generation for instance

- **Ideal solution**: better representation of the configuration
 - Use XML for instance

- Configuration of the global layout to enable/disable components thereof:
 - Disable the custom tracks component
 - Disable the display settings component
 - ...

Research

Creating the Future of Agriculture

Bayer CropScience
• Genome annotation metadata
 • Species information
 • Assembly and Annotation version

```
# database definitions

[TAIR_Arabidopsis_V8:database]
db_adaptor   = Bio::DB::GFF
db_args      = -adaptor DBI::mysql
               -dsn dbi:mysql:TAIR_Arabidopsis_V8
species      = Arabidopsis thaliana
assembly.source    = TAIR
assembly.version    = 8
annotation.source    = TAIR
annotation.version    = 8
```
Statement of interest: web services

• Querying/Reporting tool on metadata
 • List of reference sequences
 • Annotation version
 • Assembly version
 • List of available feature types
 • Suggestion:

```xml
<browser>
  <species>Arabidopsis</species>
  <assembly>bayer</assembly>
  <annotation>1.0</annotation>
  <reference-sequence>chr1</reference-sequence>
  <reference-sequence>chr2</reference-sequence>
  <feature-type>fgenesh:mRNA</feature-type>
  <feature-type>splign:mRNA</feature-type>
</browser>
```
Outline

- A bit of history

- Current Bayer GBrowse infrastructure
 - Public Genome Annotations
 - Private Genome Annotations

- In house developed components.

- Requirements/Needs

- Conclusion/Discussion
Conclusion / Discussion

• GBrowse 2 is a tool that can be used in a production environment
 ▪ Performance (rendering farm)
 ▪ Various DB’s
• Intensively used within the Bayer Bioinformatics platform:
 ▪ Facilitate data integration
 ▪ High level of integration
 ▪ Easy to maintain
• Our priorities for further developments:
 ▪ Adaptors performance
 ▪ Need to focus on user interaction
 ▪ GBrowse.conf representation
 ▪ Native integration of other GMOD tools (e.g. CMap)
Thank you for your attention