
Chado-XML

Table of Contents
Scope ..1
Description ...1
Generating Chado-XML ..2

Database retrieval: XORT Dumpspecs ..2
BioPerl: Bio::SeqIO::chadoxml ...2

Saving Chado-XML ...2
Chado-XML forms ...2

Standard Mapping ..2
Generic Mapping ...3

Macros ..3
Transactional-Chado-XML ..5
Terminology ...5

DRAFT DOCUMENT -- IN PROGRESS

Chado-XML is a direct mapping of the Chado relational schema into XML. Currently the only tool for
performing this mapping is XML::XORT, which can dump or save Chado-XML to and from a chado db.

Scope
Chado is a modular schema covering many aspects of biology, not just sequence data. Chado-XML has
exactly the same scope as the Chado schema. However, many applications may only be conversant with
certain modules. If an application is to be termed Chado-XML compliant then it should technically qualify
this with the list of modules with which it is compliant (eg Chado-XML:sequence,cv compliant).

Description
To fully comprehend Chado-XML (or a subset of Chado-XML corresponding to a certain module set) it is
necessary to understand the Chado relational schema. The documentation of Chado-XML is intentionally
minimal when describing the meaning of certain XML elements. This is because these elements
ALWAYS correspond to a table or column in the relational database, where the meaning of this element
is (hopefully) documented.

To understand or validate the structure of a Chado-XML document, consult the DTD/XSD/RNG/RNC
[TODO], in the dtd/ directory.

At some point in the future we will auto-generate comments in the DTD/XSD/etc [TODO]. This means
that application developers will then be able to comprehend Chado-XML without consulting the relational
db documentation. Until that time it is best to also consult the relational db documentation.

The rest of this document concerns syntactic issues related to the XML representatiion of Chado, rather

1

than semantic issues about the meaning of the XML elements. It is assumed the reader has a rough grasp
of these already.

Generating Chado-XML
There's a number of different ways of creating Chado-XML from various datasources…

Database retrieval: XORT Dumpspecs
XORT can select data from a database and generate XML. XORT is highly configurable, via dumpspecs.
There are a number of dumpspecs for common queries (eg fetching a ROI (region-of-interest) around a
gene or contig) - or you can write your own.

See XORT documentation (gmod/XML-XORT/)

BioPerl: Bio::SeqIO::chadoxml
BioPerl has a write-adapter for Chado-XML. This means that any file format which bioperl can pass can
be exported to Chado-XML.

If you are not familiar with the bioperl SeqIO system, you can do it on the command line, like this:

bp_seqconvert --from genbank --to chadoxml < NT_021877.gbk

This will generate expanded (no macros) Chado-XML.

(Note that if you are parsing from genbank, some extra magic has to happen to reconstruct the feature
graph from the lossy genbank flat file format - this step isn't infallible!)

Saving Chado-XML
Both static and transactional Chado-XML can be saved to a Chado database using XORT. See XORT
documentation for details.

Chado-XML forms
There are a number of different possible XML-to-db mappings available. XORT supports any generic
mapping between Chado-XML and the Chado-DB. However, in the interests of simplifying the task of
applications which make use of Chado-XML, only a limited subset of these mappings are supported.

Standard Mapping
Unless otherwise specified, any document which is said to conform to Chado-XML is assumed to specify
to the standard mapping. This is the mapping that will be most intuitive to application programmers, as it
recapitulates the nesting of features in the XML nesting; ie exons and proteins are nested beneath
transcripts which are nested beneath genes.

Chado-XML

2

Documents conforming to standard Chado-XML must conform to the model specified by
chado-xml.{dtd,xsd,rnc,rng} (see the dtd/ directory)

It is stringly recommended that any file containing a standard Chado-XML document has one of the
following file suffixes:

• .chado-xml

• .chado.xml

• .chado

There are two variations of standard Chado-XML: with and without macros (see later in this document). It
is not unreasonable to assume applications to be able to either generate or expand macros depending on
what the user prefers. However, if an application chooses not to be conversant in both these variations
then an XSL stylesheet (see the xsl/ directory) can be used to convert between these variations. XSL can
easily be integrated by either perl or java applications, or can be run on the command line.

Generic Mapping
Any XML document that can be mapped to the Chado database using the generic XORT mapping
algorithm can be said to conform to Generic-Chado-XML. Because Generic-Chado-XML is so flexible,
applications are not required to be able to read or write it in order to be classified as Chado-compliant.
Generic-Chado-XML is mentioned here mainly for completeness.

Any (standard) Chado-XML document is necessarily also a Generic-Chado-XML. The standard form is
just a more restricted subset of the generic form.

Unless otherwise noted, a document which is termed "Chado-XML" is assumed to conform to standard
Chado-XML.

If a document conforms to General-Chado-XML but not to standard Chado-XML, then it is strongly
recommended that this is made explicit in the filename suffix; eg

• generic.chado-xml

• generic.chado.xml

• generic.chado

At some point in the future there may be a need for other restricted forms of Generic-Chado-XML, that
are different from standard Chado-XML; there is no such need as yet.

Macros
Chado-XML can be extremely verbose. One reason for this is the fact that the same data can be repeated
at various places in the XML.

For example, to represent the fact that a feature is of organism Drosophila Melanogaster, it is necessary

Chado-XML

3

to identify this organism by a database unique key (genus and species in the case of organisms)

Example 1. Example feature element containing organism element

<feature>
..
<organism_id>

<organism>
<genus>Drosophila</genus>
<species>Melanogaster</species>
..other optional organismal data..

</organism>
</organism_id>

</feature>

Every feature must have an organism tag. This may seem overly onerous, but it makes Chado-XML
documents more robust. Furthermore, this constraint holds for the database so it also holds for the XML.

One consequence of this is that the same XML nodeset is present at multiple places in the document. The
document can be said to be denormalised (even though the equivalent relational data is normalised, the
resulting XML document can be said to be denormalised because of the repeating XML nodes)

The document can be normalised using Macros.

Example 2. Example Macro:

<chado>
<organism id="Drosophila__Melanogaster">

<genus>Drosophila</genus>
<species>Melanogaster</species>
..other optional organismal data..

</organism>
...
<feature>

<organism_id>Drosophila__Melanogaster</organism_id>
..

The algorithm for using macros is fairly simple - simply replace any leaf XML nodes which you would
expect to be non-leaf with the XML node pointed to by the value insider.

It is to the advantage of applications to be able to read and write both normalised and denormalised
Chado-XML (ie with or without macros). Use of macros can lead to more concise documents, and also to
cleaner application code.

For applications that write macro-ified Chado-XML, care must be taken that IDs uniquely identify the
desired element. Chado relational unique keys should ALWAYS be used for ID generation.

Chado-XML

4

In the event that certain applications prefer to use either macro-ified or fully expanded Chado-XML, but
not both, help is at hand in the form of two XSL programs which convert between either variant. See the
xsl/ directory.

Macros can be used with any generic Chado-XML, which includes standard Chado-XML.

A Chado-XML document may choose whether or not to use macros and still be considered valid
Chado-XML. If it is desirable to know whether a particular document does or does not contain macros,
then files should contain an appropriate suffix (before the chado-xml suffix). When used, this suffix string
should be either macro or expanded. Omitting this part of the suffix is acceptable.

Transactional-Chado-XML
Typical Chado-XML documents are assumed to be static or snapshot. They are atemporal - they contain
the state of the data at one particular instance in time.

Another variant Chado-XML is Transactional-Chado-XML. This represents data manipulation operations
(transactions) between two instants in time.

Transactional-Chado-XML uses the same XML elements as static Chado-XML. Additional attributes are
used to represent insert/lookup/delete/store operations which are isomorphic to SQL
insert/select/delete/select+(update|insert) statements.

Transactional-Chado-XML is described in detail in a second document TO BE WRITTEN

Either standard or any generic Chado-XM can be transactional.

The term "Chado-XML" is assumed to be static, standard XML.

Any static Chado-XML document can be treated as a transactional Chado-XML document (consisting
purely of store operations). It is equivalent to a transaction commencing from time zero.

Note that is possible for a document to be "semi-transactional", and contain "course-grained transactions".
For example, a document may contain a static data snapshot, as well as a list of deleted genes. The deleted
genes would be represented as the equivalent Chado-XML features, with op="delete" operations upon
them.

This document is strill transactional, but a useful terminological distinction is between fine and course
grained transactions.

Terminology
As we have seen there are 3 terminological axes of classification of a Chado-XML document: Standard vs
generic; with or without macros; transactional or static. So in principle 8 different DTDs are possible.

However, the vast majority of applications will interoperate using Standard+Static Chado-XML (refered
to as simple "Chado-XML"). Any other form or variant should be fully qualified.

Chado-XML

5

	Chado-XML
	Table of Contents
	Scope
	Description
	Generating Chado-XML
	Database retrieval: XORT Dumpspecs
	BioPerl: Bio::SeqIO::chadoxml

	Saving Chado-XML
	Chado-XML forms
	Standard Mapping
	Generic Mapping

	Macros
	Transactional-Chado-XML
	Terminology

